

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Data Storage

This page summarizes the different kinds of information stored by a Zilliqa instance related to internal state and the blockchain.

DSBlock

| Field | Impl Size (bytes) |
|:———————–|:———————-|
| Fields described in Whitepaper |
 |
version	to be implemented
previous hash	32
pubkey	33
difficulty	1
number	32
timestamp	32
mixHash	to be implemented
nonce	32
signature	64
bitmap	to be implemented
Additional fields	
 |
| leader pubkey | 33 |
| TOTAL SIZE | 259 |

Transaction

| Field | Impl Size (bytes) |
|:———————–|:———————-|
| Fields described in Whitepaper |
 |
version	to be implemented
nonce	32
to	20
amount	32
gas price	to be implemented
gas limit	to be implemented
code	to be implemented
data	to be implemented
pubkey	to be implemented
signature	64
transaction ID	32
Additional fields	
 |
| from address | 20 |
| TOTAL SIZE | 200 |

TxBlock

| Field | Impl Size (bytes) |
|:———————–|:———————-|
| Fields described in Whitepaper |
 |
type	1
version	4
previous hash	32
gas limit	32
gas used	32
number	32
timestamp	32
state root	to be implemented
transaction root	32
tx hashes	32 * tx count
pubkey	33
pubkey micro blocks	to be implemented
parent block hash	to be implemented
parent ds hash	32
parent ds block number	32
tx count	4
tx list	stored separately
signature	64
bitmap	to be implemented
TOTAL SIZE	362 + (32 * tx count)

Storage Estimates

Txns per block	TxBlock + txns
:—————	:—————
500	114 kB
1000	227 kB
2000	453 kB
3000	680 kB
4000	907 kB
5000	1.11 MB
10000	2.21 MB

Message List

Summary

Messages received by Zilliqa are forwarded for processing by its subclasses based on the Class byte.

Class	Message Type
:—–	:—————–
0x00	PeerManager
0x01	DirectoryService
0x02	Node

PeerManager

Ins	Message	Body	Action
:—–	:———-	:———————–	:——————————–
0x00	HELLO	Public key + port	Adds peer to store
0x01	ADDPEER	Public key + IP + port	Adds peer to store + says hello
0x02	PING	Variable-length msg	No action taken
0x03	PINGALL	Variable-length msg	Sends Ping message to all peers
0x04	BROADCAST	Variable-length msg	Starts broadcast of message

DirectoryService

Ins	Message	Body	Action
:—–	:———————	:————————–	:———————————
0x00	SETPRIMARY	Primary node IP and port	Set a node as DS, indicate the primary DS, and start POW1 processing phase
0x01	STARTPOW1	Block num + difficulty + rand1 + rand2 + pubkey + IP and port of all DS nodes	Compute and multicast POW1 to all specified DS nodes
0x02	POW1SUBMISSION	Submitter port + pubkey + nonce + hash + mixhash	Process POW1 submission
0x03	DSBLOCKCONSENSUS	Consensus message	Process consensus message, trigger POW2 processing phase when consensus DONE
0x04	DSBLOCK	DSblock + rand1 + winner IP and port	Store DSblock and proceed to POW2 submission if node lost POW1
0x05	POW2SUBMISSION	Submitter port + pubkey + nonce + hash + mixhash	Process POW2 submission
0x06	SHARDINGCONSENSUS	Consensus message	Process consensus message, trigger microblock acceptance phase when consensus DONE
0x07	MICROBLOCKSUBMISSION	Shard ID + microblock	Store microblock
0x08	FINALBLOCKCONSENSUS	Consensus message	Process consensus message, trigger finalblock sharing and new POW1 round when consensus DONE
0x09	FINALBLOCK	Shard ID + finalblock + Tx body sharing list	Push finalblock into chain and do post-processing on transactions

Node

Ins	Message	Body	Action
:—–	:——————–	:————————–	:———————————
0x00	STARTPOW2	Block num + difficulty + rand1 + rand2 + pubkey + IP and port of all DS nodes	Compute and multicast POW1 to all specified DS nodes
0x01	SHARDING	Shard ID + num shards + committee size + pubkey and IP and port of all shard nodes	Begin transaction submission
0x02	CREATETRANSACTION	Submitter IP and port + from account address + to account address + amount + nonce	Check transaction and add to created list
0x03	SUBMITTRANSACTION	Transaction body	Add transaction to received list
0x04	MICROBLOCKCONSENSUS	Consensus message	Process consensus message, trigger microblock multicast to all DS nodes when consensus DONE
0x05	FINALBLOCKAVAILABLE	Sharing mode + sharing configuration	Post-processing of all transactions and sharing of transaction bodies
0x06	FORWARDTRANSACTION	Block num + transaction body	Add transaction to committed list and share body within committee

State Diagrams

DirectoryService

[image: DirectoryService State Diagram]

Node

[image: Node State Diagram]

Consensus

[image: Consensus State Diagram]

 Welcome to the Github page for the Zilliqa source code documentation!

This site contains the auto-generated documentation as well as some supplementary design and implementation pages.

Refer to the official website for additional information on the project.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/DirectoryService.jpg
POW1_SUBMISSION

> mode-oLe

SETPRIMARY

mode = PRIMARY / BACKUP

eniry / start timer
FrocessPoW/iSubmission
exit/ RunConsensusOnDSBlock()

POWISUBMISSION

timer expires

DSBLOCK Generation

DSBLOCK.
[POW1 winner |

= .
state = DSBLOCK_CONSENSUS_PREP

entry / ComposeDSBlock() [mode=Leade]
exit] StariConsensus(

P | E—
state = DSBLOCK_CONSENSUS

ProcessDSBlockConsensus()

[>] ext/ ProcessDSBiockConsensusWhenDone(
L— DSBLOCKCONSENSUS
Consensus done Consensus done
[Oldest DS] [Not oldest DS |

[mode-me | mode = BACKUP
e - BRBRARY, Node:StartPow2() I ScheduleShardingConsensus(
2

entry/
Proce:
et/

state = POW2_SUBMISSION |
start timer
POW2Submission)

unConsensusonSharding()

POW2SUBMISSION

timer expires

Sharding Assignment

P
state = SHARDING_CONSENSUS_PREP

entry / ComputeSharding() [mode=Leader]
exit] StariConsensus(

S

state = SHARDING_CONSENSUS

ProcessShardingConsensus()
exit/ SendingShardingStructureToShard()

SHARD\NGCONSENSuS:]

Consensus done

state = MICROBLOCK_SUBMISSION |

exit/ RunConsensusOnFinalBlock(

ProcessMicroblockSubmission() ’

MICROBLO!

csusmssion_]

{ some blocks pending | MICROBLOCKSUBMISSION

[last block received |

FINALBLOCK Generation

FINALBLOCKCONSENSUS ——!

¥
state = FINALBLOCK_CONSENSUS_PREP

entry / ComposeFinalBlockMessage() [mode=Leader]
exit] StariConsensus(

¥
state = FINALBLOCK_CONSENSUS

Consensus done

ProcessFinalBlockConsensus()
exit/ SendFinalBlockToShardNodes()

_images/Node.jpg
state = POW1_SUBMISSION

et/ StartPow 1)

STARTPOW/1

P [—
state = POW2_SUBMISSION

et/ StartPow2(D —

DSBLOCK
[Not POW1 winner |

P —
state = TX_SUBMISSION

exit/ SubmitTransactions() FINALBLOCK
exit start fimer

SHARDING

MICROBLOCK Generation

Timer expires

state = MICROBLOCK_CONSENSUS_PREP

entry / ComposeMicroBlock() [shard Leader]
exit] StariConsensus(

2
state = MICROBLOCK_CONSENSUS

sMicroblockConsensus()
rocesshicroblockConsensusifPrimary() [shard Leader]

Consensus done

state = WAITING_FINALBLOCK

exit/ ProcessFinalBlock)
ext/ StartPoW1()

_images/Consensus.jpg
ConsensusLeader ConsensusBackup

INITIAL INITIAL

exit / multicast ANNOUNCE to backups

StartConsensus()

ANNOUNCE_DONE
ProcessMessageCommit()
exit / multicast CHALLENGE to backups
COMMIT

[insufficient commits] COMMIT

exit / ProcessMessageAnnounce()
exit / send COMMIT to leader

ANNOUNCE

COMMIT_DONE

exit / ProcessMessageChallenge()
exit / send RESPONSE to leader

CHALLENGE

RESPONSE_DONE

exit / ProcessMessageCollectiveSig
exit / send FINALCOMMIT to leader

COLLECTIVESIG

FINALCOMMIT_DONE

exit / ProcessMessageFinalChallenge()
exit / send FINALRESPONSE to leader

FINALCHALLENGE

FINALRESPONSE_DONE

[sufficient commits received]

CHALLENGE_DONE
ProcessMessageResponse()
exit / multicast COLLECTIVESIG to backups
RESPONSE

[insufficient responses] RESPONSE
[sufficient responses received]

COLLECTIVESIG_DONE

ProcessMessageFinalCommit()
exit / multicast FINALCHALLENGE to backups
FINALCOMMIT

[insufficient commits] FINALCOMMIT
[sufficient commits received]

FINALCHALLENGE_DONE

ProcessMessageFinalResponse()
exit / multicast FINALCOLLECTIVESIG to backups

FINALRESPONSE
[sufficient responses received]

FINALRESPONSE
insufficient responses |

exit / ProcessMessageFinalCollectiveSig()

FINALCOLLECTIVESIG

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

