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Data Storage

This page summarizes the different kinds of information stored by a Zilliqa instance related to internal state and the blockchain.


DSBlock

| Field                  | Impl Size (bytes)     |
|:———————–|:———————-|
| Fields described in Whitepaper |
      |
| version                | to be implemented   |
| previous hash          | 32                    |
| pubkey                 | 33                    |
| difficulty             |  1                    |
| number                 | 32                    |
| timestamp              | 32                    |
| mixHash                | to be implemented   |
| nonce                  | 32                    |
| signature              | 64                    |
| bitmap                 | to be implemented   |
| Additional fields  | 
                 |
| leader pubkey          | 33                    |
| TOTAL SIZE         | 259                   |




Transaction

| Field                  | Impl Size (bytes)     |
|:———————–|:———————-|
| Fields described in Whitepaper |
      |
| version                | to be implemented   |
| nonce                  | 32                    |
| to                     | 20                    |
| amount                 | 32                    |
| gas price              | to be implemented   |
| gas limit              | to be implemented   |
| code                   | to be implemented   |
| data                   | to be implemented   |
| pubkey                 | to be implemented   |
| signature              | 64                    |
| transaction ID         | 32                    |
| Additional fields  | 
                 |
| from address           | 20                    |
| TOTAL SIZE         | 200                   |




TxBlock

| Field                  | Impl Size (bytes)     |
|:———————–|:———————-|
| Fields described in Whitepaper | 
     |
| type                   |  1                    |
| version                |  4                    |
| previous hash          | 32                    |
| gas limit              | 32                    |
| gas used               | 32                    |
| number                 | 32                    |
| timestamp              | 32                    |
| state root             | to be implemented   |
| transaction root       | 32                    |
| tx hashes              | 32 * tx count         |
| pubkey                 | 33                    |
| pubkey micro blocks    | to be implemented   |
| parent block hash      | to be implemented   |
| parent ds hash         | 32                    |
| parent ds block number | 32                    |
| tx count               |  4                    |
| tx list                | stored separately   |
| signature              | 64                    |
| bitmap                 | to be implemented   |
| TOTAL SIZE         | 362 + (32 * tx count) |




Storage Estimates

| Txns per block | TxBlock + txns |
|:—————|:—————|
| 500            |  114 kB        |
| 1000           |  227 kB        |
| 2000           |  453 kB        |
| 3000           |  680 kB        |
| 4000           |  907 kB        |
| 5000           | 1.11 MB        |
| 10000          | 2.21 MB        |







          

      

      

    

  

    
      
          
            
  
Message List


Summary

Messages received by Zilliqa are forwarded for processing by its subclasses based on the Class byte.

| Class | Message Type     |
|:—– |:—————–|
| 0x00  | PeerManager      |
| 0x01  | DirectoryService |
| 0x02  | Node             |




PeerManager

| Ins   | Message   | Body                   | Action                          |
|:—– |:———-|:———————–|:——————————–|
| 0x00  | HELLO     | Public key + port      | Adds peer to store              |
| 0x01  | ADDPEER   | Public key + IP + port | Adds peer to store + says hello |
| 0x02  | PING      | Variable-length msg    | No action taken                 |
| 0x03  | PINGALL   | Variable-length msg    | Sends Ping message to all peers |
| 0x04  | BROADCAST | Variable-length msg    | Starts broadcast of message     |




DirectoryService

| Ins  | Message              | Body                      | Action                           |
|:—–|:———————|:————————–|:———————————|
| 0x00 | SETPRIMARY           | Primary node IP and port  | Set a node as DS, indicate the primary DS, and start POW1 processing phase |
| 0x01 | STARTPOW1            | Block num + difficulty + rand1 + rand2 + pubkey + IP and port of all DS nodes | Compute and multicast POW1 to all specified DS nodes |
| 0x02 | POW1SUBMISSION       | Submitter port + pubkey + nonce + hash + mixhash | Process POW1 submission |
| 0x03 | DSBLOCKCONSENSUS     | Consensus message         | Process consensus message, trigger POW2 processing phase when consensus DONE |
| 0x04 | DSBLOCK              | DSblock + rand1 + winner IP and port | Store DSblock and proceed to POW2 submission if node lost POW1 |
| 0x05 | POW2SUBMISSION       | Submitter port + pubkey + nonce + hash + mixhash | Process POW2 submission |
| 0x06 | SHARDINGCONSENSUS    | Consensus message         | Process consensus message, trigger microblock acceptance phase when consensus DONE |
| 0x07 | MICROBLOCKSUBMISSION | Shard ID + microblock     | Store microblock |
| 0x08 | FINALBLOCKCONSENSUS  | Consensus message         | Process consensus message, trigger finalblock sharing and new POW1 round when consensus DONE |
| 0x09 | FINALBLOCK           | Shard ID + finalblock + Tx body sharing list | Push finalblock into chain and do post-processing on transactions |




Node

| Ins  | Message             | Body                      | Action                           |
|:—–|:——————–|:————————–|:———————————|
| 0x00 | STARTPOW2           | Block num + difficulty + rand1 + rand2 + pubkey + IP and port of all DS nodes | Compute and multicast POW1 to all specified DS nodes |
| 0x01 | SHARDING            | Shard ID + num shards + committee size + pubkey and IP and port of all shard nodes | Begin transaction submission |
| 0x02 | CREATETRANSACTION   | Submitter IP and port + from account address + to account address + amount + nonce | Check transaction and add to created list |
| 0x03 | SUBMITTRANSACTION   | Transaction body | Add transaction to received list |
| 0x04 | MICROBLOCKCONSENSUS | Consensus message | Process consensus message, trigger microblock multicast to all DS nodes when consensus DONE |
| 0x05 | FINALBLOCKAVAILABLE | Sharing mode + sharing configuration | Post-processing of all transactions and sharing of transaction bodies |
| 0x06 | FORWARDTRANSACTION  | Block num + transaction body | Add transaction to committed list and share body within committee |







          

      

      

    

  

    
      
          
            
  
State Diagrams


DirectoryService

[image: DirectoryService State Diagram]




Node

[image: Node State Diagram]




Consensus

[image: Consensus State Diagram]







          

      

      

    

  

    
      
          
            
  Welcome to the Github page for the Zilliqa source code documentation!

This site contains the auto-generated documentation as well as some supplementary design and implementation pages.

Refer to the official website for additional information on the project.
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